Multidisciplinary optimization of a configuration for a radio-controlled aircraft using modeFRONTIER

Cristiano Queiroz Vilanova
Gabriel Furtado Paes
Lara Christina Braga de Oliveira
Leonardo Vasconcelos de Abreu Ruszczyk
Lucas Murelli Silveira
Thaís Duarte Tavares
Welberth Douglas Pereira do Nascimento
Zeus Siqueira Bessoni
PRESENTATION TOPICS

• Company Overview;

• Problem Description;

• Methodology;

• Goals;

• Conclusion and next steps.
Company Overview

University of Brasília
School of Technology
Department of Mechanical Engineering

2004 ➔ Team foundation
2005 ➔ Best rookie team
2006 ➔ Best design
2007 ➔ 7th place
2008 ➔ Larger wingspan regular class
2009 ➔ First experience with optimization
2010 ➔ Multidisciplinary Optimization
Problem Description

• Obtain an optimal configuration for a radio-controlled aircraft, the DV UAV-2010, which will participate in the twelfth edition of “SAE BRASIL Aero Design 2010” at the city “São José dos Campos” – SP – Brazil;
Problem Description

- Takeoff in 30.5m or 61m;
- Payload of at least 3.5 kg;
- Landing on 61m.
Problem Description

- $4 \text{ m} < \text{dimensional sum} < 6.5 \text{ m}$;
- Engine OS 0.61 FX;
- Engine K&B 0.61 ABC.
Methodology

• The routine uses modeFRONTIER to perform a multidisciplinary optimization of the disciplines: geometry, aerodynamics, stability, performance and structures. The project was created in the modeFRONTIER using the programs: MatLab, AVL (Athena Vortex Lattice) and the Xfoil.

• We used 20 input variables, the optimizer algorithm used was MOGAII and the parameters defined as the optimization goals were: empty weight and payload of the aircraft.
Methodology

• Inputs

 – Aspect ratio and taper of the wing, the rudder and the elevator; (6)
 – Taper ratio and twist ratio of the wing; (2)
 – Wing chord at the root; (1)
 – Maximum thickness, maximum camber and their positions along the chord, for the root and the tip of the wing; (8)
 – Vertical and horizontal tail volume coefficients ; (2)
 – Tail boom’s length. (1)
Methodology

Inputs ➔ Airfoil Cd x Cl x alpha ➔ Geometry ➔ Plane CD x CL x alpha ➔ Performance
 ➔ Plane stability ➔ Evaluation of empty weight ➔ score
Methodology

Input Variables

Output Variables

Objectives
Goals
Goals

<table>
<thead>
<tr>
<th>Name</th>
<th>Optimization value</th>
<th>Final value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect ratio Wing</td>
<td>5.6 m</td>
<td>5.6 m</td>
</tr>
<tr>
<td>Aspec ratio Elevator</td>
<td>4.0 m</td>
<td>3.2 m</td>
</tr>
<tr>
<td>Aspect ratio Rudder</td>
<td>1.03 m</td>
<td>1.5 m</td>
</tr>
<tr>
<td>Wing’s taper ratio</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>Wing’s twist ratio</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>Horizontal tail volume coefficient</td>
<td>0.17</td>
<td>0.36</td>
</tr>
<tr>
<td>Vertical tail volume coefficient</td>
<td>0.026</td>
<td>0.01</td>
</tr>
<tr>
<td>Wing’s tip maximum camber</td>
<td>0.0881c m</td>
<td>0.0881c m</td>
</tr>
<tr>
<td>Wing’s root maximum camber</td>
<td>0.1100c m</td>
<td>0.1100c m</td>
</tr>
<tr>
<td>Root’s chord</td>
<td>0.48 m</td>
<td>0.48 m</td>
</tr>
<tr>
<td>Tail boom’s length</td>
<td>0.5 m</td>
<td>0.6 m</td>
</tr>
<tr>
<td>Position of maximum camber at the wing’s tip</td>
<td>0.4110c m</td>
<td>0.4110c m</td>
</tr>
<tr>
<td>Position of maximum camber at the wing’s root</td>
<td>0.5060c m</td>
<td>0.5060c m</td>
</tr>
<tr>
<td>Position of maximum thickness at the wing’s tip</td>
<td>0.2220c m</td>
<td>0.2220c m</td>
</tr>
<tr>
<td>Position of maximum thickness at the wing’s root</td>
<td>0.1680c m</td>
<td>0.1680c m</td>
</tr>
<tr>
<td>Wing’s taper</td>
<td>0.78 m</td>
<td>0.78</td>
</tr>
<tr>
<td>Elevator’s taper</td>
<td>0.53 m</td>
<td>0.9</td>
</tr>
<tr>
<td>Rudder’s taper</td>
<td>0.67 m</td>
<td>1</td>
</tr>
<tr>
<td>Wing’s tip maximum thickness</td>
<td>0.1760c m</td>
<td>0.1760c m</td>
</tr>
<tr>
<td>Wing’s root maximum thickness</td>
<td>0.1930c m</td>
<td>0.1930c m</td>
</tr>
</tbody>
</table>
Goals
Conclusion and next steps

• Our project proved to be satisfactory, being able to carry 14kg payload, weighting 2.5 kg;

• The team plans to continue to perform optimization in later years in order to improve our design which will represent the team well in the future.