modeFRONTIER v4.3 and Beyond

Product Roadmap

Luka Onesti
modeFRONTIER v4.3.0 Overview

- **Key Features:**
 - **Workflow Nodes** for the extended process integration
 - **Optimization Algorithms** for fast and global search
 - **Design Space and Data Mining Tools** for improved design assessment
Process Integration
Nodes supported:
ANSYS Workbench, UGS NX, NI LabVIEW, SimulationX

New Nodes in 4.x family:
DOS Batch, SH Script, Matlab, Excel, Catia, GTSuite
1. The job starts on a grid node
2. modeFRONTIER distributes the job on grid machines available
3. The controlling grid node gets results back
The new ANSYS Workbench 12 node

Technical Features:

- ANSYS Workbench v12.1 supported
- Handling of Input/Output Parameters defined in Workbench Parameter Set
- Pre-processing macro functionalities available to detect geometry failure, check mesh quality or similar
- Post-processing macro functionalities available for advance assessment of results
- Support GridGain system for distributed computing
The new METAPost node

Technical Features:

- METAPost v6.4.0 or greater
- METAPost can be used to extract responses for the optimization problem
- Several FEA output file reading supported (incl. NASTRAN, ABAQUS, LS-Dyna, Pamcrash, Radioss, Madymo, etc.)
The METAPost node (2)

OUTPUT results:
- Real Scalar History
- Real Vector History (X,Y history curve), Complex Vector History (Frequency, Magnitude and Phase)
Process Integration: New SimulationX node (1)

Technical Features:
• SimulationX v3.3 or greater
• Components and Connections parameters input/output parsing
• Grid-enabled for distributed computing
Process Integration: New SimulationX node (2)

INPUTS:
- Scalar component/connection parameters
- Component Tables defined via matrix variables

OUTPUTS:
- Scalar output parameters:
 - MIN
 - MAX
 - MEAN
 - LAST
- Vector output curves
Additional Integration nodes

NEW FEATURES:
- New node for coupling with OCTAVE environment
- **SoC** node for System-on-a-Chip design

IMPROVEMENTS:
- **Flowmaster node:**
 - Ambient conditions available as input
 - Custom Unit set selection
- **GT-SUITE/ANSA Node:**
 - New license check option before the run starts
- **ProEngineer Node:**
 - PRT and ASM versioning control
- **Script Nodes:**
 - Timeout option
The new Lookup Table node

- **Problem**: given a set of inputs \(X=(X_1, X_2, \ldots, X_n)\), and a reference sets of data (i.e. any table in the Design Space):
 1. The **Lookup Table** node finds closest \(X\) for a given set of inputs.
 2. The **Lookup Table** node returns \(Y=(Y_1, \ldots, Y_m)\) corresponding to the point which best matches \(X\).

- **Benefits**: SOM Table can be used in the Workflow to find BMU to **classify** sets of data for each iteration of the scheduler selected

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>Out1</th>
<th>Out2</th>
<th>Out3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005841</td>
<td>0.161041</td>
<td>0.1786</td>
<td>0.552608</td>
<td>0.474595</td>
<td>2.246912</td>
<td>0.764758</td>
</tr>
<tr>
<td>0.298337</td>
<td>0.517603</td>
<td>0.114514</td>
<td>0.790157</td>
<td>1.055254</td>
<td>6.282621</td>
<td>0.428268</td>
</tr>
<tr>
<td>0.590493</td>
<td>0.206324</td>
<td>0.638246</td>
<td>0.185467</td>
<td>3.724415</td>
<td>0.711683</td>
<td>4.307526</td>
</tr>
<tr>
<td>0.675951</td>
<td>0.156606</td>
<td>0.385191</td>
<td>0.139075</td>
<td>5.249864</td>
<td>1.027373</td>
<td>4.462599</td>
</tr>
<tr>
<td>0.712135</td>
<td>0.825965</td>
<td>0.00546</td>
<td>0.534791</td>
<td>1.02169</td>
<td>2.543269</td>
<td>0.002200</td>
</tr>
<tr>
<td>0.749222</td>
<td>0.418097</td>
<td>0.209215</td>
<td>0.338242</td>
<td>2.070278</td>
<td>3.090614</td>
<td>1.352288</td>
</tr>
</tbody>
</table>
• **Case Study**: highly nonlinear optimization problem requires different RSM training for local accuracy
• For each cluster of solutions a different Response Surface is created
• **Question**: how to select the best Response Surface model to estimate response value based on input parameters values?
Answer: use the **LookupTable** node in the Workflow as follows:

- Define as matching criterion the cluster ID for a given SOM clustered table
- A different RSM is loaded based on value of the matching cluster ID
Workflow Creation Wizard

The Workflow Creation Wizard lets you quickly and easily create simple template workflows including:

- Input/Output variables
- Input/Output vectors
- File nodes
- Application nodes
- DOE and Scheduler nodes
Workflow Creation and Edit from Excel (1)

- Variable nodes defined in Excel can be imported into modeFRONTIER for automatic Workflow creation
- Variable nodes settings can be exported to Excel
- Variable nodes settings can be edited in Excel and imported into modeFRONTIER
Workflow Creation and Edit from Excel (2)

- Import/Export of variable settings is available for:
 - Vector Input Variable
 - Vector Output Variable
 - Vector Objective
 - Vector Constraint
Custom Workflow Library

- The number of D/I nodes is growing by the day, thus visualization needs to become simpler.
- Custom selective view of the Workflow nodes library is now available.
- Custom library view can be restored at anytime.
Optimization Algorithms
NSGA-II Enhancements

- **New features:**
 - Improved NSGA-II version to support unordered discrete variables for mixed-integer problems
 - New schemes added:
 - **Controlled Elitism** to increase uniformity distribution of Pareto front
 - **Variable Population Size** for higher accuracy of approximated Pareto front
 - **Steady State Evolution (MFGA):** steady state evolution with an adaptive elitism procedure for an efficient parallelization scheme
External Schedulers Bridge

- Bridge to external optimization algorithms
- 3rd Party tools supported:
 - MATLAB (www.mathworks.com)
 - Scilab (www.scilab.org)
 - Octave (www.gnu.org/software/octave)
 - Runtime library to exchange data between modeFRONTIER and 3rd party tool
- The user can easily integrate custom optimizers with modeFRONTIER
Benefits: mixing existing algorithms for custom search

Results:
1. Original NBI-AFSQP version by modeFRONTIER
2. Random search powered by MATLAB
3. Desired search area powered by MATLAB
New Fast Algorithms

- New FMOGA-II and FSIMPLEX exploit an efficient set of internal adaptive Response Surface Method.
- Combination of adaptive RSM, Incremental Space Filler DoE and optimization algorithms for cost-effective design optimization
- Parallel RSM training using multi-thread technology
Other Enhancements

- MOSA:
 - Support unordered discrete variables
 - Steady-state evolution option

- Evolution Strategy:
 - Support unordered discrete variables
Design Space
Evolutionary Design - RSM Parallel Creation

New Features:

- Each RSM job evaluation can be performed in parallel mode
- Multi-threading RSM training to exploit multi-core system computational capabilities
- The user can specify desired number of CPUs for RSM training
New Features

- Threshold Filter
- New correlation coefficients:
 - Spearman
 - Partial Correlation
 - Partial Ranking Correlation
RSM Multiple Function Plot

Different RSM functions plotted on the same chart

Sliders changes inputs interactively

Explore new Frontiers of Innovation

www.esteco.com
Design Space visualization charts can be saved to a XML Template file and reused for different projects.
CAP: Design Principle Extraction Tool

Computer Aided Principles

- Attention on effects (trends) of combinations of multiple variables.
- Data classification based on characteristic value (clustering).
- Visually representation of trends in description variables, (characterizing each cluster).
- Visually representation of variations among the trends in the description variables.

modeFRONTIER is not only able to find what is the optimum, but why it is optimum.

Explore new Frontiers of Innovation

www.estecocom
Visualization Concept

Workflow Editor

Data Management

Assessment Module

Explore new Frontiers of Innovation

modeFRONTIER® is a registered product of ESTECO Srl
Copyright© 1999-2010

www.esteco.com
1. Improvements & New Features
2. Bridging
3. User interface
Improvements: Renewing The Tools

MCDM Tool
- Wizard based
- Supporting all tables

RSM Tool
- Automatic outliers removing
- Mark Outliers Option
- Repeated designs handling
New Features: Numeric Tools

- RS Validation
 - Independent Test Set
 - Validation statistics summary tables

Mixture Experiments (DOE)
- Tailored for mixtures
- Components in proportions

Explore new Frontiers of Innovation
www.esteco.com
New Features: Multi Variate Analysis

Support Vector Machine
- Classification analysis
- Regression problems

Spectral Clustering
- Reduce dimensionality
- Transitive relations
New Features: Algorithms Selection Tool

- Guided Scheduler/DOE selection
- Problem definition
- Algorithms Rankings
- Customizable selection rules.
Improved CAP Tool

Computer Aided Principles

- Cluster Trend Recognition
- Relationships among Designs
- Sampling Definition
Bridging: external applications exploitation

- A console as a bridge-head to 3rd party math environments
- Expert users
- Customized functions and plotting
- Examples: 'R', Python, Matlab
External viewer

- Standalone application based on modeFRONTIER 5 engine (without the optimization engine)
- Compatible to modeFRONTIER .prj file
- Display datasets, graphics, and documentation
- Create postProcessing charts and functions
User interface: ribbon taskbar

- Quick access toolbar
- Contextual task group
- Keyboard navigation and key tips
- Rich tool tips
- Resize, collapse and scrolling supported
- Simpler layout
- Easy drag & drop interface
- New charts and nodes classification
- Standard behavior for all modules
User interface: new layout

New Tools Environment

New charts libraries

Explore new Frontiers of Innovation

www.estecoco.com
modeFRONTIER 5
Integration Concepts
Integration Concepts

Development of the Run Engine and integrations of Third Party Softwares

- Process Engine
- Workflow Framework
- Process Integration
- Grid Framework

Explore new Frontiers of Innovation

www.esteco.com
API - Application programming interface

- “bridge” between customer needs and mF
- full library of objects and methods
- build up new workflow and call a new optimization run
- script console
new Scripting API example
Hardware-in-the-loop integrations

- LabVIEW integration
- Real-world optimization runs
- Signal processing, automation control, test systems

[Diagram of integration process]
Grid extension

More nodes in the grid

- direct integration node on a software installed in a local network
- all the most important direct integrations
- enhance the grid manager tool
Simplify common tasks - 1

New engine
✓ more scalable
✓ more robust
✓ new process table
Simplify common tasks - 2

New Filesystem
- fewer levels in the directories tree
- different log levels
- aiming to a brand new Run Log
Simplify common tasks - 3

New Parameter Chooser

✓ one-click
✓ clearer selection
✓ build up a workflow immediately
modeFRONTIER 5 Numerics
New improved version of **Sobol** DOE:
- it can manage over 20000 input variables

New improved version of **Reduced Factorial** DOE:
- implements a *Resolution V* algorithm for better statistical analysis

New improved version of **MACK** Scheduler:
- more control over internal RSM training

New improved version of **SIMPLEX**
- better constraint handling

New improved version of **MOGT** Optimizer:
- more efficient variables decomposition

New **RSM** algorithms to be introduced or improved
Brand new algorithm for managing many variables: **Morris-EE Scheduler**

- It is a screening method: it is used for reducing the dimensionality of the input space, and identifying the more-important input parameters at a low computational cost.
Brand new hybrid optimization algorithm to be introduced:

• It combines different optimization algorithms in one single scheduler

• It improves both robustness by using heuristic optimizers, and accuracy by using gradient-based optimizers
New Sensitivity Analysis tool

Sensitivity Analysis is the study of how the variation (uncertainty) in the output of a mathematical model can be apportioned, qualitatively or quantitatively, to different sources of variation in the input of the model.

It is a technique for systematically changing parameters in a model to determine the effects of such changes.
Thank you!

For further information, please contact:

ESTECO
Area Science Park
Padriciano, 99 34012 Trieste
Italy

Phone: +39 040 375 5548
Fax: +39 040 375 5549
e-mail: support@esteco.com
visit: www.esteco.com

www.esteco.com