Thermodynamic characterization of supersonic expansions using shadowgraphy and numerical Simulations

Juan Manuel Lorenzi, Carlos Alberto Rinaldi, Cynthia Toro Salazar, Salvador Carlos Ortiz, (Comisión Nacional de Energía Atómica (CNEA), Argentina) Mayo Villagrán (Universidad Nacional Autónoma de México, Mexico)

Presented at: 21st AIAA Computational Fluids Dynamics Conference
San Diego, CA, June 24-27, 2013
Who we are and what brings me here

- MEMS (Micro Electronic Mechanical Systems) research lab in Argentina
- Sensors, actuators, e-noses, RF switches.
- Now: micronozzles
Motivation

• Molecular beams, condensation
• Cheap, quick way to analyze nozzle flow
 – Flow rate, species concentrations
 – Temperature, Pressure, etc.
• Options:
 – Interferometry
 – Schlieren
 – Shadowgraphy
Mach Diamonds

Underexpansion

http://www.aerospaceweb.org/question/propulsion/q0224.shtml
Shadowgraphy

- Simplest optical setup imaginable
- Index change at Mach Diamonds
- Intensity

\[I(n) \propto \frac{\partial^2 n}{\partial x^2} \]

Sample Images
Information in shadowgrams

- Separation of Mach Barrels
- Processing in ImageJ
CFD in ANSYS Fluent

- Implicit density-based solver
- SST $k-\omega$ turbulence method
- 2-3 steps of mesh adaption
- Meshes smaller than 20,000 cells
- Convergence in less than 10000 iterations
Converged solution in Fluent

Density
Temperature
Mach
Pressure
Image Comparison

Shadowgrams

Simulations
Simulations in both cases, diamond positions “fall off”
Drop-off for the peak positions

Attributed to viscous losses in the literature
Mass Flow

1-D Theory

\[F = \rho u A = \rho^* v_s^* A^* \]

\[T^* = \left(\frac{2}{\gamma + 1} \right) T_{in} \]

\[\rho^* = \left(\frac{2}{\gamma + 1} \right) \frac{1}{\gamma - 1} \rho_{in} \]

\[p^* = \left(\frac{2}{\gamma + 1} \right) \frac{\gamma}{\gamma - 1} p_{in} \]

\[F(p_{in}) = \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma+1}{2(\gamma-1)}} \frac{\gamma A}{v_{s,in}} p_{in} \]

\[F_{1D} \approx 0.776 F_{sim} \]

Summary

• Supersonic jet characterization by:
 – Extreme experimental simplicity
 – “Simple enough” simulations

• Good for:
 – Quick and dirty assessment
 – Classroom assignments

• Next steps:
 – Improve pictures (Schlieren)
 – Other fluid characterization (interferometry, pressure-sensitive paints, PIV, etc.)
 – Transient flow